A Stepwise uncertainty reduction approach to constrained global optimization

نویسنده

  • Victor Picheny
چکیده

Using statistical emulators to guide sequential evaluations of complex computer experiments is now a well-established practice. When a model provides multiple outputs, a typical objective is to optimize one of the outputs with constraints (for instance, a threshold not to exceed) on the values of the other outputs. We propose here a new optimization strategy based on the stepwise uncertainty reduction paradigm, which offers an efficient trade-off between exploration and local search near the boundaries. The strategy is illustrated on numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D BENCHMARK RESULTS FOR ROBUST STRUCTURAL OPTIMIZATION UNDER UNCERTAINTY IN LOADING DIRECTIONS

This study has been inspired by the paper "An efficient 3D topology optimization code written in MATLAB” written by Liu and Tovar (2014) demonstrating that SIMP-based three-dimensional (3D) topology optimization of continuum structures can be implemented in 169 lines of MATLAB code. Based on the above paper, we show here that, by simple and easy-to-understand modificati...

متن کامل

A semidefinite relaxation scheme for quadratically constrained

  Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...

متن کامل

Optimization of the Microgrid Scheduling with Considering Contingencies in an Uncertainty Environment

In this paper, a stochastic two-stage model is offered for optimization of the day-ahead scheduling of the microgrid. System uncertainties including dispatchable distributed generation and energy storage contingencies are considered in the stochastic model. For handling uncertainties, Monte Carlo simulation is employed for generation several scenarios and then a reduction method is used to decr...

متن کامل

A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems

Global optimization methods play an important role to solve many real-world problems. Flower pollination algorithm (FP) is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new hybrid optimization method called hybrid flower pollination algorithm (FPPSO) is proposed. The method combines the standard flower pollination algorithm (FP) with the par...

متن کامل

An informational approach to the global optimization of expensive-to-evaluate functions

In many global optimization problems motivated by engineering applications, the number of function evaluations is severely limited by time or cost. To ensure that each of these evaluations contributes to the localization of good candidates for the role of global minimizer, a sequential choice of evaluation points is usually carried out. In particular, when Kriging is used to interpolate past ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014